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For function f defined on the interval 7:=[—1,1], let p¥,(f) be its best
approximant out of 2, under the L, norm

¢ 12
&l s = <i |(x)12 dz) :
vr

where do is a finite Borel measure on I. We compare the L, norm of the error
function f— p¥,(f) on subintervals vs that on the whole interval /. Then we
consider the distribution of the zeros of the best L, approximants. Corresponding
results are also obtained for approximation on the unit circle {zeC:|z|=1}.
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1. INTRODUCTION

Let C be the complex plane, 4:={zeC:|z| <1} the closed unit disk,
and /:=[—1, 1] the closed unit interval. Throughout this chapter, we use
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BEST L, POLYNOMIAL APPROXIMANTS i7t

dx to denote a finite positive Borel measure on 7 with supp{dy) an infinite
set, and du to denote a finite positive Borel measure on &4 :=
{zeC:{z| =1} with supp(du) an infinite set. Given p>0, for a Borel set
E < ], define

; \ L7
M siani=( ] 001

v E /
while for a Borel set Fcéd, define

\ Lp

, U o g A
1S Lpd ) = (ir | f(e™)}? d!i/l

Let L,(dx} (resp. L,(du)) be the space of Borel measurable functions f
on I (resp. céd) with [ fll; =S an<x (resp. [flloa =
i Lyanaay < L.

For a given fe C(I) (we use C(K) to denote the space of continuous
functions defined on K< C), we denote by p¥ _(f) its best uniform
approximant out of #,, the set of all algebraic polyncmials of degree at
most #, L.e.,

L= pr D= il L f—p.fis

Dr€ P

where ||« means the uniform norm on K< C. Similarly, define S’fx{f }
(for f'e C(¢4)), p¥ (f) (for fe L (dx)) and 5% (f) (for fe L, (du)} in Z, as
follows:

hf'—s:‘:a: f\'\lc_i = 1rf ||./' —-[‘nllc"

PrsPy

f—P,*z,p(f) |L,,(d1) = inf |f—p,. Lplday

Pne Py

and

1f—sx p(f)llL,,(du) = = Pl

Pn€ Zy

Kadee [6] proved that for real-valued fe C{I), there are (n+ 2}-point
subsets of the extremal point sets A4,:={xel:{flx}j—p¥ (/i x)i=
i f—pk.(f)],} that, for a suitable subsequence of integers s, are
distributed like the extrema of Chebyshev polynomials T, (x}:=
(1/27 1) cos(n arccos x). So, by the denseness of such extrema, there is an
increasing subsequence of the positive integers, say 4{f) <N, such that for
any subinterval [a, b] <=1 (a #b),

“f—p:,cc(f)“[ab]
(L f=pr(N)s

i

=1s nEA(\.f)s nZn[a.b}‘ ‘/ )
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Essentially, (1) tells us that {p¥_.(f)}.>_, does not approximate f better
on any subinterval of I than it does on the whole interval I, which
illustrates the principle of contamination introduced by Saff [13]. Recently,
Kroo and Saff [7] proved a result which implies that (1) also holds for
complex-valued fe C(I) and also for the analogous case of uniform
approximation on the unit circle ¢4. More precisely, if feA(4):=
{feC(4): f analytic in 4°}, where 4°:={zeC:|z| <1}, then there is a
subsequence of N, say A(f), such that

ILf = sm (-
I|f Sn T(f)”cd

for any subarc I" (not a single point) of é4.

In this paper, we first prove the analogues of (1) and (2) for general L,
best approximation on I and &4, which illustrate an L, version of the
principle of contamination (this is done in Section 2). Then we treat the
problem of the distribution of zeros of the L, (p>0) best approximants
Py, and sy 2 and so generalize the Jentzsch-Szego-type theorem in [1].
This is done in Section 4. In the proof of the Jentzsch—Szego-type theorem
for the unit circle case, the regularity of the measure plays a very important
role (cf. Definition 3.1). It turns out that the regularity of a measure is
equivalent to the regular nth root asymptotic behavior of the corre-
sponding orthonormal polynomials (cf. Theorem 3.3). Because of its own
interest, we state and prove this fact in Section 3.

=1, neA(f), n=ng, (2)

2. NorM COMPARISONS IN L, APPROXIMATION
Set
a(x) :=da([—1, x)), xel,
and
w8) :=du({z=e":1€[0,0)}), #e[0,2n].
Then «’ and ' exist a.e. on I and [0, 2n], respectively.

THEOREM 2.1. Suppose that o' >0 ae. on I Let fe Lydwn), f not a
polynomial, and d € (0, 2]. Then

= (I'!f—Pff,z(f)“Lz(dx.[mb]’)z=oo (3)

z If— p:,z(f)”Lz(dz)

n=0

uniformly for [a,b]c[~1,1] with b—a = 6.
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Before proceeding with the proof of Theorem 2.1 we state a needed
lemma.
Let {p,.}*_, be the unique system of polynomials orthonormal with
respect to dz, i.e., polynomials
Pa(x)i=pylda, X)=7,X"+ .-+ (7,=7,{dx)>0) 4

such that

PolX) ulx) da =5,

o

where J,,,=1 if m=n and d,,, =0 otherwise. Then we have the following
result of Maté, Nevai and Totik:

LEmMma 2.2 (Theorem 13.3 in {9]). Assume z'>C ae. on I Then for
each {a, bl <1 (as£b), there is a constant 1> 0, depending oniy on b-—a,
such that

)
5 | polda, x)|* dx =T, n=0.
Ya

Proof of Theorem 2.1. Set a, .= j!f(x) phdy. xydy, n=0,1,2,... Then

i3

;D:Z(x) = prTZ(f; x): Z akpk(dy's x)ﬁ ?2:5:‘}, :-2-

k=90
and
ke \, 2
En(f) = !if—pl*z.lﬂl,z(dz):( Z iaki;/i 3 V":Cl_ 1: 2:
k=n+1
Letting
1f = p¥ (W Lz tapy P
Foi= A=, 1, Lo,
E.(f)
we have

i 1 |
ra, pn(dxv ) )ll Ladx [a,b])
= il p* * i
= pr2— P12l Lyantasy

| * il * ;
1/ = PXol tya oo ¥4 = Ph i 0h fyiie o

<
<max{rn’ rn—l}(En(f) +En— 1'(./(‘}}'

W
——
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On the other hand, by Lemma 2.2,

la, p.(dx, ')!ILz(d:x. [a,6]) = la,| | pa(da, )l La(da, [a,5])

=cla,l, n=0,1,2, .., 6)
for some constant ¢ >0. But
Ian|2= Z faklz_ z 'ak|2=En~l(f)2_En(f)2’
k=n k=n+1

and so, combining (5) and (6), it follows that
HE, (Y = ELf))
Smax{ri’ f'i_l}(En, l(f) + En(f))2= n= 1’ 2, 3a [T
Thus

E,_((/)—E(f) e _ 7
E,_ (f)+E()" re_y b n=1,23,.. (7)

Next we note that since E,(f) decreases to zero as n— oc, it follows from
elementary properties of series that

§ BB _
2 E (N +E)

(8)

Therefore (7) implies that 3., max(r2, r>_,) = oc, which is equivalent to
3 1

For the unit circle, we have the following companion of Theorem 2.1.

THEOREM 2.3. Suppose that ' >0 ae. on [0, 2n]. Let fe L,(du), f not
a polynomial, and 6 € (0, 2n]. Then

x Illf_st,z(f)“L;(dp,F) 2
= 00, 9
L ( \;f—s:r,z(f)nwm) °" ®

uniformly for Borel sets F < A with (linear) Lebesgue measure =4.

Proof. We first introduce the orthonormal polynomials with respect to
du; that is,

¢rz(z) = (Pn(d#’ Z)=ann+ (Kn = Kn(d,"‘)>0)5 (10)
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v
¢

satisfying

—| o) e du=5,,

Then we proceed exactly as in the proof of Theorem 2.1, using the
following result of Maté, Nevai, and Totik instead of Lemma 2.2.

Lemva 2.4 (Corollary 7.5 in [9]). Assume g’ >0 ae. on [0,2r. T
jor each 6 >0 there is a constant >0 such that

| lodu 2)Pduzt,  n=0,

jor every Borel subset F of ¢4 with |F| =0, where |-| denotes the Lebesgue
measure on ¢4,

Remark. The inequalities in Lemmas 2.2 and 2.4 are the so-called
Turén-type inequalities, see [9].

COROLLARY 2.5. (i) With the assumptions of Theorem 2.1, if f € Lyidu,
>0, and —1<a<b<1, then there is a subsequence A =N such that

C
P = P2 Lyanra b])/ —5 = P Laans ned,
where C is a positive constant depending oniyv on b—a

(ity With the assumptions of Theorem 2.3, if fe Ly{du), ¢>
EFcédis any Borel set with |F| >0, then there is a subsequence A <
that

29

Wf—s¥ 2(])|Lv(du nZ 12” ILf— sk f)liszdy,n ned, {12}

where C is a positive constant depending only on |F|.

Proof. By (8), for any § >0, there is a subsequence of positive integers,
Ay < N, dezpending only on f and 4, such that

i ‘<En71(f)_En(f‘>
n1+0 Eﬂ—l(f)_*_Er'(.f‘;.
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Together with (7), this gives

. " b
n17+52<max{7ne’n'1)’a 7’16/10,

which implies (11). The proof of (12) is identical. |}

Our next result shows that Theorem 2.1 is best possible in the sense that
the exponent 2 appearing in (3) cannot be replaced by any larger value.

PROPOSITION 2.6. Let du(x)=(2/n(1—x?)"?)dx, xe(—1, 1). Then for
each r>1,

filx)=> %cos(k arccos x)

k=1

satisfies

< || r :Z(fr “ 2(dx, [ — 2+9
(f Pl Lygan Lb])) <o, (13)

,Z:O If, — Piz(ﬁ)”Lg(fm)

for every be (—1,1) and 6 > 0.

Remark. 1t is easy to see that, by a modification of Proposition 2.6, we
can show that (9) is also best possible.

Proof of Proposition 2.6. We use C,,C,,.., to denote absolute
constants. Note that for the given dx(x),

pa(da, x)=cos(n arccos x)=: t,(x),

n=1,2,3, .. and py(dx x)=1/ /2 So

n

1
p¥fr x)= Z P’k() n=1,23,..

M
e

and pg,(f,, x)
Set

k
+ Y. cos j6, k=123, ..

j=1

| =

and 0 :=arccos xe [0, n]. Then

W= 3 55 (D0)~ Dy _,(0))

|
=L

< D, (8)
;( (k+1> Du(6)— n
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Thus, for xe[ -1, 1],

. _ X (6 \ R
R<Cy (X g Do)+ 2= e s,
k=n 7 /
Since
sin(k + 1/2)8 .
D.(0)= — =123 .,
i 2 sin 62 *
we have
2 sin /2
k=1.2,3,.. . Thus, with |sin 8/2! = /(1 — x)/2, it follows from (14)
, 1
]R,,(x)ing;, for —1<x<g<b<t

[ ~b , 1:2 i
(| |R,,(x)i~d-x) <Gt o=l
\<-i :

But, for n=1,2,3, ..,

ol

| IRPd= Y 53Co

hence, from (15) we get

(0= DXl raamt — 5\ 20 C,
| s * (£ <
\ i|jr_pn_2\_/r}|'!L3(111) !

which implies that the series in (13) is convergent. §

The generalizations of Thecrems 2.1 and 2.3 for best £

approximants remain open problems. In light of the Kadec resul
the case p=oc, it is tempting to make the following

Conjecture. 1f ¥' >0 ae. on [, f noi a polynomiai, then

i <|| f-p;‘:p(f)liL(dnc ra.b”\l'ﬂ
= llf pn /2 f/ PLp {dn i j

—_
= T

N
It (1) 4

-3

that

L, polynomiai

for
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3. REGULARITY OF MEASURE

In Section 2, we used ' >0 a.e. or ¢’ >0 a.e. in our assumptions. By a
theorem of Rahmanov (cf [12,10]), we know that these assumptions
imply that lim, _, . y"=2 and lim,, _, ,, k2" =1, respectively (cf. (4), (10)).

When we consider the distribution of zeros of the best L, (p>0)
approximants, these limit conditions suffice for our purpose.

DermsiTioN 3.1, We call dx (resp. du) a regular measure with respect to
I (resp. ¢4) if lim yim=2 (resp. lim, , . k1"=1).!

n— o in

For measures on I, we have the following result of Erdés and Turan.

THEOREM 3.2 [3]. The measure dx is regular with respect to I if and
only if JU—
lim |[p,(da, z)|"" = |z + /2" —1], ze C\[, (16)

H — C

where the convergence in (16) is locally uniform in C\L

In (16), the branch of the square root is taken so that \/z*—1 behaves
like z near infinity.
The main result in this section is

THEOREM 3.3. A measure du on ¢4 is regular with respect to éA if and
only if

lim |p,(du, )" =lz|,  |z21>1, (17)

where the convergence in (17) is locally uniform in |z]) > 1.

Before giving the proof of Theorem 3.3 we need to recall some properties
of the orthogonal polynomials on the unit circle. Let

1
D, (z)=D,(du, z) :=K— Q. (du, z)=z"+ -, n=0,12,...
Then the monic polynomials @, satisfy the following recursive relation (cf.
[17, p. 293; 5, p. 132]),
Dr1(2)=DF(z)—a,z®P,(z), (18)

! Regularity of general measures (with arbitrary compact support) is treated in [16].
Simultaneously. yet independently, results corresponding to Theorems 3.2, 3.3, and 4.1, (for
p=2), and Corollaries 3.4, 3.5, and 3.6 for the general case have been partially announced in

[16].
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where
D(z) :=2"D,(1/2)
and
+i{0) -
ayi= B 0= -2 g
Ky
Also we have (cf. [5, p. 21)

K2 —k2=lo,, (0), n=0,12....

Proof of Theorem 3.3. Note that by the maximum principle,

If (17) 1s true, then

- o H— T

With {22}, this yields

limsup k1" <1 +p,

n-—+
and, since p >0 is arbitrary, we get

: ~1n
lim sup x,"< L.

H— X

On the other hand, by the monotonicity of x,, (cf. (20}), we have

0<K0<K,I, n=0,1,2, ..,
and so
liminfx),”> 1.
H— =c
Thus

: im__«
lim x,”=1,

n—

ie., the measure du is regular when (17} is satisfied.

Now let us assume that the measure du is regular with respect to

make use of the formula

ponad
D

i
W

YR
{285

b

e

6>0

fa)
Lo

We
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@,(z)
D¥(z)= {1—“——}, n=1,273, ..,
( EO K oE(z)

which follows from (18). Since

OIS e
PEOL oq s,
we have, for |z] <1,
|P¥(2)] <”I:[1 {1+lad}, n=123,
k=0

Also note that, from (19) and (20),

- 2
< _hn \’ =1- Ianlza 77:0, l, 2, T,

Kpy1/

Now we claim: if du is regular, then for every d >0, we have

i (0
lim J"—(—)=O,

noc N
where j,(0) is the cardinality of the set
L(0) ={j:0<j<n, |a|>d}.
In fact, for je I,(6) (0<d < 1),

O<1—[a)?<1-6?

(24)

(the left-hand inequality follows from the fact that |g;| =P, . (0)| < 1),

and so

2 " 2
&) -6
Kn+1 j=0 Kj+1

=[1 (1—la)?)
j=0

i

[T (t=lal?)- I (1—lal?

Jj€n(d) J&In(3)
0</<n
< JI (1—1gl?
J& In(3)

<(1— 82,

(27)
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Thus, by regularity of di, we have

| =lim inf( Ko

narx \Kyi

In
> g (1 _ 52)iimsupn,,,{jn{5! ,'1’

and so
(0
lim sup j—’ﬂ =0,
n

H— oC

which proves our claim.
Now by (24), for any 4= (0, 1) and jz| < 1,

@3 ()< TT (A+lah - T[] (L+lgh”

jed) Je g8}
C=j<n
< 2/,,(6!;;1 i (1 + é)(rz *jn-fC:')‘i__-)i'
Hence

limsup |@*|1r <1+,

it— xC
and, by the arbitrariness of d € (0, 1), we cbtain

limsup [ @, 150 =limsup |@*| < L.

niicA
n— x n—

With (21), it follows that

But recall that all the zeros of @, lie in |z| <1 {cf. [17, p.292]
(cf. [4, Chap. 2 Sect. 2.B]) (28) is equivalent to

lim |&,(z)]"" = 2],

focally uniformly in |z| > 1. Thus

lim [,(z)|""= lim |x,®,(z)1*"

74

L die o3 n— =C
7 : / n
= lim |x,}”" im |@, {2}’
n— n— C
— il
=z

locally uniformly in |z| >1. |

Qo
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From the proof we have the following

COROLLARY 3.4. The following assertions are pairwise equivalent:

(i) lim,_, .ol =1

(i) lim,_ ,xk"=1.
(iii) lim, ., (n+1)""3X7_ In(1—|a]?) =

Proof. (i)=-(ii) The proof follows from (22) and (23).
(ii)= (i) By (28),

lim o, Y= lim [x,®,|:"= lim x)"|®,|r=1.
n — oC n— n

—

(ii) <> (ili) Note that by (27),

1 1
A Zl -
T I R T I +1 n(1—la®). 1§

The following corollary illustrates the importance of the regularity of

measures (cf. [15]).

CoRrOLLARY 3.5. For any p>0, if dx (du) is regular with respect to 1
(resp. é4), then for any & >0, there is N, ,>0, depending only on & and p,

such that
TPl < (14 8)" 1Py i)
(respectively,
1Pulloa < (L+ )" 1 Poll L),
forn>N, ,and all P, € Z,.

Proof. Note that (29) is equivalent to

P 1/n
lim sup { sup —“—’L} <L

n—x PPy ”Pn”Lp(dx)
P, £0

Since du is regular, Theorem 3.2 implies that

lim | p,(ds, )" = L.

(29)

(30)

(31)

Then by expanding any P, € Z, in terms of { p,(dx, -}}%_,, we see that (31)
is true for p=2. Then following Saff and Totik (cf. the proof of



BEST L, POLYNOMIAL APPRCXIMANTS i83

Theorem 1.5(i1) in [15]), we know that (31} is true for all p>3. This
proves (29).

Using Theorem 3.3 (or Corollary 3.4) instead of Theorem 3.2, we can
prove {30) in a similar way. |

By Theorem 1.1 in [15], we know that for dx reguiar with respect to 7,
fis equal (dx—a.e. on [} to a function that is analytic on 7 if and only if

1 f Ln £37
lim sup |!../" —pn p(lei Lpf dx) (5L}

Hn—

As a consequence of Theorem 3.3, for the unit circle, we have

COROLLARY 3.6. Assume du is regular with respect to 4. Let f e L {du)
for some p>0. Ther. f is equal (du—a.e. on £4% 10 a function that is analyric
on an open set containing A if and only if

tim sup [ f ~ % (/i1 i < 1- (33}
n— x
Proof. We use the same method as in [18, Sect. 4.5, Theorem 3], and
briefly describe the main steps.
First, if f is analytic on 4, then (cf. [18, p. 761} there exist polynomiais
g,€#?,, n=0,1,2 .. such that

lim sup [/ —q,l 5 <1,

n— C
and so

Hmsup | f —s% (/)] g <limsup | f—g, 100 < 1.

n-— x n—

This proves the necessity of (33).
Next, if (33) holds, then

lim sup |[s% (/) —sx¥_ 1 (O ha, <1

n— o

and so, by Corollary 3.5,

lim sup [s% (/) = s¥ 1 ,(/)1Es < 1.

H— o

Hence g(z):=3,_,(sF (/) —s¥ | () +s§,(f) is analytic on 4 and
f= gdu~a.e. on ¢A4. This gives the sufficiency of (32). §



184 LI, SAFF, AND SHA
4. JENTZSCH-SZEGO-TYPE THEOREMS IN L, APPROXIMATION

Let P, be a polynomial of exact degree n, and let z,, z,, .., z, be the
zeros of P, (counting multiplicity). Define the measure v(P,) as

WP) ==Y 6, (34)

where 6, denotes the Dirac’s measure for the point zeC.

The arcsine measure is the measure dx/n,/1—x* on I The uniform
measure on é4, denoted by u*, is df/2n (z=e").

As a consequence of Corollary 3.5, we prove

THEOREM 4.1. Let p>0 and da be regular with respect to I. Let
Tn.p € ‘?;n Tn,p(x) =x"+ .- > satisfy

” Tn.pHLp(da] = P:E{J’n ”Pn” Ly(dx)s h= 05 1: 27 e
Pp=x"+ ...

Then v(T,,_ ,) converges in the weak-star topology to the arcsine measure as
n— 0.

Proof. By Theorem 2.1 in [17, we only need show that

lim sup || T,, [} < 4. (35)

By Corollary 3.5, for ¢ >0 and » large enough,
I Tn,plflg (L+¢&)" Tn,p“ Lyldx)
< +e)" | T, Ly(dx)

" Lp
<ozl (| &)

where T,(x) := (12"~ ") cos(n arccos x). Hence

limsup | T, 7" < (1 +¢)i,

and so (35) follows by the arbitrariness of ¢>0. ||

For the zero distribution of monic polynomials of minimal L,(du) norm
on the unit circle, we need to modify the measure v(P,) in (34). First, for
z€ A°, define the positive unit measure

FRWELN

0.:=Re . , teéd.
t—z) 2m
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Then &, is the harmonic measure on é4 for z (or, in the terminology of
Landkof, the Green measure for the point z and the region A°, {8, p. 2127}
Next, for a polynomial P, of exact degree n with zeros z,, z,, .., z, {count-
ing multiplicity), define
1/ o <)
WP =0 X 9t 0,
B\gea e
For a measure o, we adopt the notations
U(o,z) = i logiz —1 ~* do{t}
and
(o) :=| (0, 7) do(z)
Then it is easy to see that, for ze C\ 4,
U(V(P,), ) =U(V(P,), ). {36}

Now we can state

THEOREM 4.2. Let p>0 and du be regular with respec: to 4. Let
C,,e2,C, (2)=z"+ .-, satisfy

I | — 1 | it — 0N 1
I Cn, p!l Lpldu) — P:Ielt:_j’n HPn| Lytduys =4, i, 2., e
Py=z"4 ...
Then ¥(C,_,) converges in the weak-star topology io the uniform measure g%

as #— oC.

Remark. From the definition of C, , it is easy tc show that ali its zeros
lie on 4°,

Proof of Theorem 4.2. As in the proof of Theorem 4.1, by Corollary 3.5,
for ¢>0 and » large enough,

NC plios< (1427 [1C,

Lplddu)

<(L+8)" 12"

/o \1.-'p
<(1+g)"( | du)
\vid /
Hence
lim sup ({C, =1 (37}

640:63-2-3
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By the proof of Theorem 2.1 in [1], inequality (37) implies

lim %(v(C, ,), z) =%(u*, z), ze C\4.

So, by (36), we also have
lim %(¥(C, ,). z) = %(n*, z), ze C\4. (38)

Now, if v is any weak-star limit measure of the sequence {#(C, ,)}= .
then, as in the proof of Theorem 2.1 in [ 1], we can obtain from (38) that

U(v, z) < I[p*], zedd.

Since v is supported on ¢4 and v(é4) =1, integrating the last inequality
yields I[v]<I[u*]. Thus, by the uniqueness of the solution to the mini-
mum energy problem (cf. [8, Chap.II]), we get v=py* and so the whole
sequence {#(C, ,)}°_, converges in the weak-star topology to u*. |

The following Jentzsch—Szego-type theorems show that the L, (p>0)
best approximants also obey the principle of contamination.

THEOREM 4.3. Let f be continuous but not analytic on I, dx a regular
measure with. respect to I, and p > 0. Then there is a subsequence A(f)c N
such that v(p} (f)) converges in the weak-star topology to the arcsine
measure as n— 0, ne A(f).

THEOREM 4.4. Let f be analytic in A°, continuous on A, but not analytic
on 4, and let dp be a regular measure with respect to ¢4. Then, for each
p>0, there is a subsequence A(f)<=N such that ¥(s} ,(f)) converges in the
weak-star topology to p* as n— o, ne A(f).

Furthermore, in the special case that log ' € L ([0, 2n]), then v(s} ,(f))
itself converges in the weak-star topology to u* as n— x, ne A(f).

Remarks. (1) For Jordan arcs or Jordan curves with length measure
and weights w satisfying the condition that some negative power of w is
integrable, results similar to Theorems 4.3 and 4.4 hold (cf. [17], [14]).

(ii) Theorem 4.4 is an L, version of a recent result of Mhaskar and
Saff [11].

Since the proof of Theorem 4.3 is similar to that of Theorem 4.4, we only
give the latter.

Proof of Theorem4.4. We first show that
lim sup |Is¥ (/) 27 <1 (39)

"= xC
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and
lim sup |a} | > 1, (40}
n—
where s¥ (f, z)=a} 2"+ ---, n=0,1,2, ...
Inequality (39) follows easily from Corollary 3.5:
: i 1'n i| 17
hm Sllp i|S (f) ‘E hm 5up | Sn p(f) l L;:/d‘ll\y
n— o n— X
Lip Yy £1 V1Y
<lim sup(max {27, 2} | 1] L)
n— X
<1
For {40), note that for p>1,
'Ilf—sjp(f) |L_,,ld;u l|f n+1 p(f)' Lpidy
i + 1 e L3 H
< |EL/{‘_(Sn+1_p(f)_a:‘+ L.p“ z" )!l Lotduy ™ !I.} _Sn+1,p‘\,f>ilLa(d;i)
~ L:p
<lak, ] <| du) , n=1,23 .. {4i
véd
For 0 < p< !, we similarly get
% R !/ . \
f'—S,T,,(f) VLp(dpy T I|f n-'—l P fHL,mu)S an«-Lp!P{ % dy i,
\vées /
n=1,2,3, {42

Now. since f is not analytic on A, Corollary 3.6 vields

lim sup £ — 5% (/) g = 1.
Together with (41) or (42), this implies (40).
Now from (39) and (40), it follows that there is a subsequence A(/ =™
such that the monic polynomials s ,(f)/a} , satisfy

()
hmsup| "*‘; i <L {43}
n— i an,p 25
neAlf)

But by Lemma 3.1 in {17, (43) implies that, for any closed set 4 =T 4,

lim v(s7 ,(f))4)=

7 — X
neA(f}
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As in the proof of Theorem 4.2, (43) also gives that
lim w(v(sy (), 2)=2(u*, 2),  zeC\4,
ne A(f)
and so, as before, we conclude that
lim (s} (f)), z) =% (u*, z), ze C\4

n— 2
nedif)

and that any weak-star limit measure of {¥#(s)% ,(f))},c.(s) must equal p*.
This proves the first part of our theorem.

In order to prove the second part, by Theorem 2.1 in [1], it remains to
show that, for any closed set A < 4°,

lim v(s},(f))(4)=0. (44)

n—
ne A(f)
For this purpose, we need the following lemma.

LemMMma 4.5. Ler w(0)=0 be Lebesgue integrable on [0,2n] and
logwe L([0, 2x]). Assume p>0 and Fe H*. Then

1 p2n ] Lip ~
IF(Z)|<K|Z;,,,(%L |F(e®)]? w(8) dB) ,  zed’,

where K|, ,>0 is independent of F.

Proof. The Szego function (cf. [17, Chap. 10])

1 p2n g z
D(z) :=exp (E JO log /w(0) ;G i . dH)

is in H?, has no zeros in A°, and satisfies

lim [D@re®) =|w(0)|¥%,  ae. 0€(0,2n)
r—+1-

First, let us assume F#0 in 4°. Then we can define an analytic branch
of [F(z) D(z)*?]7 in 4°, and so, by Cauchy integral formula, for |z| <
r<l,

1 r2= [F(re®) D(re®)*?]?

[F(z) D(z)**]% = e JO ire® do.

re®—z
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Thus, by letting r— 17, we get (cf. [2, p. 21])

i i 2 o
|F(z)i?|D(2)}? <ZL_-,———*| |[F(e"}}7 wi8) db,
pe 1<
ie.,
|F(z)|7 < 1 inF!Ff’e“’)!”u-{'?)de
2 D)L —zl) 4
Thus, with K. ,:=|D(z)] " *#(1—|z|}~ "%, the lemma is proved when

F#0. The general case can be proved by factoring out the zeros of F. ie.,
by writing F(z)= B(z) g(z), where g is in H* and has no zeros in 4°
B(z) is a Blaschke product, and applying the first part of the proof to g (<f.
[18, Sect.5.57). 1§

We now return to the proof of Theorem 4.4. Applyving Lemma 4.5 to the
functions /' — s (f), we see that s} (/) converges locally uniformly to ;’” in
A%, Since f / has only finitely many zeros on each compact subset of A7,
Hurwitz's theorem implies that (44) holds for any closed set A = A7, T}
v{sy {f)) converges in the weak-star topology to u* as n— o, n¢
by Theorem 2.1 in [1]. |

REFERENCES

i. H.-P. BLatT, E. B. SAFF, AND M. Sikani, Jenizsch-Szegd type theorsms for zeros of best

appmximatlo'ls, J. London Math. Soc. /2; 38 {1988}, 307-316.

P. L. DUrexN, “Theory of H? Spaces.” Academic Press, New York, 1979.

P. ErDOs aND P. TURAN, On interpolation. IIL, Ann. of Math. 41 {1940). 510-535

D. Gaier, “Lectures on Complex Approximation,” Birkhiuser, Bo>ta" 1987.

. Ja. L. GeroMmiNus, “Orthogonal Polynomials: Estimates, Asymptotic Formulas, and
Series of Polynomials Orthogonal on the Unit Circie and on an Interval,” Consultants
Bureau, New York. 1961.

6. M. I. Kapec, On the distribution of points of maximal deviation in the approximaticn of
continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960}, 199-202.

7. A. Kro6 axp E. B. Sarr, The density of extreme points in complex poivnomial
approximation, Proc. Amer. Marh. Soc. 103 (1988}, 203-209.

8. N. S. LANDKOF, “Foundations of Modern Potential Thecry,” Soringer-Verlag, New York.
1972.

. AL MATE, P. NEval, axp V. ToTik, Strong and weak convergence of orthogonel poivno-

mials, Amer. J. Marh. 109 (1987), 239-282.
10. A. MATE. P. Neval, axp V. ToTIk, Asymptotics of the ratio of leading coefficient
orthonormai polynomials on the unit circle, Constr. dpprox. 1 {1985), 63-65.

il. H. N. MHaskar AND E. B. Sarr. The distribution of zeros of asymptoticaily exiremal

polynomials, J. Approx. Theory. in press.

12. E. A. RaamanNov, On the asvmptotics of the ratio of orthogenal polynomials, 1. #Mark.

USSR-5b. 46 (1983), 105-117.

B W bo

D




190 LI, SAFF, AND SHA

13.

14.

15.

16.

17.

18.

E. B. Safr, A principle of contamination in best polynomial approximation, in
“Approximation and Optimization” (Gomez et al., Eds.), Lecture Notes in Mathematics,
Vol. 1354, pp. 79-97 Springer-Verlag, Berlin, 1988.

M. Smvkan1, “Asymptotic Distribution of Zercs of Approximating Polynomials,” Disser-
tation, University of South Florida, 1987.

E. B. SAFr AND V. ToTik, Weighted polynomial approximation of analytic functions,
J. London Math. Soc. (2; 37 (1988), 455-463.

H. Stanr anp V. Torik, N-th root asymptotic behavior of orthonormal polynomials, in
“Orthogonal Polynomials: Theory and Practice (Paul Nevai, Ed.), Kluwer Acad. Pub.,”
Dordrecht (1990), 395-417.

G. Szegd, “Orthogonal Polynomials,” 4th ed., Vol. 23, Amer. Math. Soc. Colloquium
Publ.,, Providence, RI, 1975.

J. L. WacLsH, “Interpolation and Approximation by Rational Functions in the Complex
Domain,” 5th ed., Vol. 20, Amer. Math. Soc. Colloquium Publ. Providence, RI, 1969.



