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For function f defined on the interval 1:= [ -1, 1], let P:'2(f) be its best
approximant out of .'?J" under the L 2 norm

where drx is a finite Borel measure on I. We compare the L 2 norm of the error
function f - P:'2(f) on subintervals vs that on the whole interval I. Then we
consider the distribution of the zeros of the best L p approximants. Corresponding
results are also obtained for approximation on the unit circle {ZEC: Izi = 1}.
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1. INTRODCCTION

Let C be the complex plane, A := {z E C: Izi ;s:; 1} the closed unit disk,
and 1:= [ -1, 1] the closed unit interval. Throughout this chapter, we use
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1 i i

dx to denote a finite positive Borel measure on I with supp(&x) an infinite
set, and d/l to denote a finite positive Borel measure on eLi:=
{ZEe: Izi = I} with supp(d/l) an infinite set. Given p>O, for a Borel set
Ee I, define

(

• \ ip
-! .: I.(' 'P ,.If!1 LDid,.E)·= 11.!1 (xli d;x) ,

" -£ J

while for a Borel set Fe cA, define

Let Lp(dy.) (resp. Lp(d/l)) be the space of Borel measurable functions f
I ( "'A) , h 'If II ;; Fli (P ,qon resp. eLJ WIt I, Lp(d'):= I'j; Lp(dx,!) < x ,.resp. ;ij IIL-p(dll):=

U!i Lv!di",cA) < x.;).
For a given f E C(l) (we use C(K) to denote the space of continuous

functions defined on K c C), we denote by P:, xU) its best uniform
approximant out of 2P,,, the set of all algebraic polynomials of degree at
most n, i.e.,

where I, ·11 K means the uniform norm on K c C. Similarly, define s~, x (j)
(for f E C(cA)), p:jf) (for f E Lp(dex)) and s:, p(f) (for f E L p(df,1)) in ~, as
follows:

\' f s* (f\!' '- l"'f ;. .i' n ,.I. - Ii.X 'IELl'- H !i) - rn!li!c!'
prJ E 2Pn

,I {' - p* (f)!1 '= ;nf ,'r - p ! - . ';.J n,p ! Lp(d:x)' I :IJ hll!...p~d:X)'
PnE f!J>.'1

and

Kadec [6J proved that for real-ralued f E C(I), there are (11 + 2)-poi.nt
subsets of the extremal point sets An:={XEJ:if(x)-p~cxJlx):=

IiI - p~x(f)!II} that, for a suitable subsequence of integers n, are
distributed like the extrema of Chebyshev polynomials Tn(x):=
(1/2 n

- 1) cos(n arccos x). So, by the denseness of such extrema, there is an
increasing subsequence of the positive integers, say AU) e N, such that for
any subinterval [a, b] c I (a # b),

II!- p~cc(f)1I [a,b]

U - p~,cc(f)III
1, I ~ "

\. t )
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Essentially, (1) tells us that {p~.",(f)}:::o does not approximate f better
on any subinterval of I than it does on the whole interval I, which
illustrates the principle of contamination introduced by Saff [13]. Recently,
Kroo and Saff [7] proved a result which implies that (1) also holds for
complex-valued f E C(I) and also for the analogous case of uniform
approximation on the unit circle cA. More precisely, if fEA(A):=
{fE C(A): f analytic in A C

}, where A 0 := {z E C: Izi < 1}, then there is a
subsequence of N, say A(f), such that

Ilf -s~.",(f)llr= 1
ill- s: x (f)ll eLl '

(2)

for any subarc r (not a single point) of oA.
In this paper, we first prove the analogues of (1) and (2) for general L 2

best approximation on I and cA, which illustrate an L 2 version of the
principle of contamination (this is done in Section 2). Then we treat the
problem of the distribution of zeros of the L p (p > 0) best approximants
P~.P and s~,p, and so generalize the Jentzsch-Szego-type theorem in [1].
This is done in Section 4. In the proof of the Jentzsch-Szego-type theorem
for the unit circle case, the regularity of the measure plays a very important
role (cf. Definition 3.1). It turns out that the regularity of a measure is
equivalent to the regular nth root asymptotic behavior of the corre­
sponding orthonormal polynomials (cr. Theorem 3.3). Because of its own
interest, we state and prove this fact in Section 3.

2. NORM COMPARISONS IN L 2 ApPROXIMATION

Set

ct(x):=dct([-l,x», xEI,

and

/1((}) := d/1( {z = eit
: t E [0, (})}), () E [0, 2n].

(3)

Then a' and /1' exist a.e. on I and [0, 2n], respectively.

THEOREM 2.1. Suppose that :x' > ° a.e. on I. Let f ELida), f not a
polynomial, and c5 E (0, 2]. Then

f (i!f - P:2~)liLz(dx.[a.b]))2 = 00,

fl~O Ilf - Pn,2(f)IILz(dx)

uniformly for [a, b] c [ -1, 1] with b - a? c5.
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Before proceeding with the proof of Theorem 2.1 we state a needed
lemma.

Let {Pn};~:~o be the unique system of polynomials orthonormal with
respect to &1., i.e., polynomials

such that

r Pm(x) Pn(x) drx = 0mn,
oj!

where iJ mn = 1 if m = nand (jmn = 0 otherwise. Then we have the following
result of Mate, Nevai and Totik:

LE.MMA 2.2 (Theorem 13.3 in [9J). Assume:x' > 0 a.e. on J. Then for
each Ca, b J c I (a # b), there is a constant 1" > 0, depending only on b -- a,
such that

_b

IIPn(drx,x)12d:X~1",
• 'Q

n?: O.

Proof of Theorem 2.1. Set an := Sd(x) Pn(d'X, x) dx, n = 0, 1,2, .... Then

and

"* ( ).- * (f, ) - " 'd'[1",2 X .- P".2 , X - L akPkl ':I., XI,
k~O

n =0,1,2, ...

Letting

n=O, 1,2,.".

we have

n = 0, 1, 2~ ...,

(5)
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On the other hand, by Lemma 2.2,

IlanPn(da, . ) II LM~, [a,b]) = lanl II Pn(da, . )11 LMa, [a,b])

~clanl, n=0,1,2, ..., (6)

for some constant c > O. But

X;. ·x

lan l2 = L iak l
2- L lakI 2=En_ 1(f)2_En(f)2,

k=1Z k=n+ 1

and so, combining (5) and (6), it follows that

c2(En-1 (f)2 - En(f)2)

:::; max{r~, r~_ 1 }(En-1(f) + En(f)f,

Thus

n = 1, 2, 3, ....

n = 1, 2, 3, .... (7)

Next we note that since En(f) decreases to zero as n -4 00, it follows from
elementary properties of series that

(8)

Therefore (7) implies that L:'=1 max(r~, r~_I)= OC', which is equivalent to
(3). I

For the unit circle, we have the following companion of Theorem 2.1.

THEOREM: 2.3. Suppose that Il' > 0 a.e. on [0,2n]. Let f E L 2(dll), f not
a polynomial, and c5 E (0, 2n]. Then

'X (Ilf s* (f)11 )2L - n,2 ,L2(dl',F)

n=O lif -s~,2(f)IILMI') = 00,

uniformly for Borel sets Fe cd with (linear) Lebesgue measure ~ b.

(9)

Proof We first introduce the orthonormal polynomials with respect to
dfl; that is,

tpn(Z) := tpn(dfl, z) = KnZn+ ... (K n := Kn(dfl) > 0), (10)



satisfying

BEST L p POLY",O~HAL APPROXI\IA"iTS 175

Then we proceed exactly as in the proof of Theorem 2.1, using ~he

fonowing result of Mate, Nevai, and Totik instead of Lemma 2.2.

LE:\mA 2.4 (Corollary 7.5 in [9J). Assume /l'>0 a.e. on [0,2rr]. Then.
for each (j > °there is a constant r > °such that

n;;:;:O,

for every Borel subset F of aLI with iFl ;;:;: 15, li"here i·1 denotes the Lebesgue
measure on cLi.

Remark. The inequalities in Lemmas 2.2 and 2.4 are the so-caHed
Turan-type inequalities, see [9].

COROLLARY 2.5. (i) With the assumptions of Theorem 2.1, iffEL 2 idrx),
e > 0, and -1 ~ a < b ~ 1, then there is a subsequence A c N such thai

i",; 1 \
t. i.-'-i

where C is a positire constant depending only on b - a.

(ii) With the assulnptions of Theoren12.3, if f E L2{dll)~ e> 0, and
Fe cL1 is an}' Borel set with 1Ft> 0, then there is a subsequence A eN such
that

lrhere C is a positive constant depending only on iFl.

llEA, (12 )

Proof By (8), for any 15 > 0, there is a subsequence of positive integers,
Ao c N, depending only on f and 15, such that

i £n-l(f)-£IlU)
1+6<£ (f) £I r

\'n n-1. + II\]!
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Together with (7), this gives
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(13)

c
nli2+bi2:::::; max{r,,, rn_I},

which implies (11). The proof of (12) is identical. I
Our next result shows that Theorem 2.1 is best possible in the sense that

the exponent 2 appearing in (3) cannot be replaced by any larger value.

PROPOSITIOK 2.6. Let dct(x)=(2/n(1-x2)1/2)dx, xE(-1, 1). Then for
each r> 1,

oc 1
fAx) := L kr cos(k arccos x)

k~l

satisfies

~ (1Ifr- P~2(fr)IILM~'[-I'b]»)2+b
1... < C!)
n~O Ilfr- P:2(fr)llLz(d~) ,

for every bE ( -1, 1) and (j > 0.

Remark. It is easy to see that, by a modification of Proposition 2.6, we
can show that (9) is also best possible.

Proof of Proposition 2.6. We use C1 , C2, ..., to denote absolute
constants. Note that for the given d:x(x),

Pn(d:x, x) = cos(n arccos x) =: tn(x),

n = 1, 2,3, ..., and Po(dx, x) = 1/)2. So

n 1
P:2(fn x) = L k r tk(x),

k~1

and p"t,2(fn x) == 0.
Set

1 k

Dk(()) :=7+ L cosj(),
- }=I

and () := arccos x E [0, n]. Then

11 = 1, 2, 3, ...

k= 1, 2, 3, ...
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Thus, for XE [-1, 1J,

iR '-)' C (~ 1 ID (8)1 ID,,_1(8)1\
I ,,~x I ~ -1 L.. kr,l' k·. + n' J'

k=1l .~ /

Since

177

n= 1, 2, 3, « •• (14)

1 -1 '"l ~
K- " "-, J, ... ,

we have

for 0 < T ~ e~ n,

k = L 2, 3, .... Thus, with Isin ej2! = "/(1 - x )/2, it follows from (14) that

. 1
iR,,(x)i ~ Cz-,nr

and so

for -1 ~ x ~ b < 1,

But, for 11 = 1, 2, 3, .."

n = 1,2,3, .." (15)

hence, from (15) we get

n = 1, 2, 3, .«'

which implies that the series in (13) is convergent. I
The generalizations of Theorems 2.1 and 2.3 for best L p polynoffi!a.:

approximants remain open problems. In light of the Kadec result (1) k,"
the case p = 'x, it is tempting to make the following

Conjecture. If):' > 0 a.e. on I, f not a polynomial, then

x (I'f- P* (f)I', ,\\PL I_ ".p. IL,o\d~,[a,bj'l =:c.
,,~() ilf - p~_)f)hp'd~; )
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3. REGULARITY OF MEAST;RE

In Section 2, we used :x' > 0 a.e. or p' > 0 a.e. in our assumptions. By a
theorem of Rahmanov (cf. [12, 10]), we know that these assumptions
imply that lim,,~ex: '1:'/"=2 and lim,,~x ,,:,/" = 1, respectively (cf. (4), (10)).
When we consider the distribution of zeros of the best L p (p > 0)
approximants, these limit conditions suffice for our purpose.

DEFIr-;ITIO;-.< 3.1. We call da (resp. dp) a regular measure with respect to
I (resp. aLI) if lim" ~ ex: 1':'/" = 2 (resp. lim" _ ex: ,,:'i" = 1).1

For measures on I, we have the following result of Erdos and Turan.

The measure da is regular Ivith respect to I if andTHEOREM 3.2 [3].
only if

lim Ip,,(d:>:, zW"" = Iz+~z2-11,
n-- x

ZEC\!, (16)

where the convergence in (16) is locally uniform in C \I.

In (16), the branch of the square root is taken so that )Z2 - 1 behaves
like z near infinity.

The main result in this section is

THEOREM 3.3. A measure dp on eLI is regular with respect to eLl if and
only if

lim ICfJ,,(dp, ZWI" = Izl,
,,~ ex:

Izi > 1, (17)

where the convergence in (17) is locally uniform in Izi > 1.

Before giving the proof of Theorem 3.3 we need to recall some properties
of the orthogonal polynomials on the unit circle. Let

1
et>,,(z) = et>nCdp, z) := - CfJ,,(dp, z) = Z" + ... ,

""
n = 0,1,2, ....

Then the monic polynomials et>" satisfy the following recursive relation (er.
[17, p. 293; 5, p. 132J),

(18 )

I Regularity of general measures (with arbitrary compact support) is treated in [16].
Simultaneously, yet independently, results corresponding to Theorems 3.2, 3.3, and 4.1, (for
p = 2), and Corollaries 3.4, 3.5, and 3.6 for the general case have been partially announced in
[16].
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where

cfJ,;(z) := z"cfJ,,( liz}

and

179

n = 0, L 2, ,,,' (19)

Also we have (cf. [5, p.2])

O ' ..,
11 == ,1 ~ L~ ." . (20)

Proof of Theorem 3.3. Note that by the maximum principle,

for n = 1, 2, 3, ..., and hence

(21)

n = 1, 2, 3, ....

If (17) is true, then

lim sup 1,G?,,(d,u, .)II~:::::; lim '[G?,,(d,u,· )!j f=II.=1 ~ 1 +P; = 1+ p,
11 --+ 7:

With (22 )., this yields

ll-X

and, since p > 0 is arbitrary, we get

lim sup K~,ll::::; 1.
Il-X

for p > O.

On the other hand, by the monotonicity of K n (cf. (20)), we have

and so

0< Ko::::; K,P n = 0, 1,2, ...,

Thus

lim inf 11:;'/11 ~ I,
tl- ::.c

lim K;''' = :,
n--+x

i.e., the measure d,u is regular when (17) is satisfied.
Now let us assume that the measure dll is regular with respect to c,d. We

make use of the formula
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n - 1 { cPk(z )}
cP:(Z)=}!O l-akz cPt (Z) ,

which follows from (18). Since

I cPk(Z)I={~~'cPt(z)/ l'
?,

we have, for Izi ~ 1,
n-l

IcP,~(z)1 ~ n {I + laki},
k~O

Also note that, from (19) and (20),

n = 1, 2, 3, ...,

Izi < 1,

Izi = 1,

izl > 1,

n= 1,2, 3, .... (24)

(

K \2
_._n_ 1 = l-lan I 2,

/(n+l/
11=0,1,2, ,... (25)

Now we claim: if dfl is regular, then for every 6> 0, we haue

l
' jn(6) 01m --=,

n - -:r.;, J1

where jn(6) is the cardinality of the set

(26)

In (c5):= U: O~j~n, lajj >c5}.

In fact, forjEln(6) (0<6< 1),

0< I-lay < 1- c5 2

(the left-hand inequality follows from the fact that lajl = IcPj ->-I(O)1 < 1),
and so

(
Ko )2 11 ( K. )2- =n-J

K n + 1 j=O Kj + 1

n

= n (1-l aj I
2

)

j~O

= n (1-l aj I
2
). n (i-lay) (27)

jEl,,(J) j'Un(b)
O~j~n

~ n (1-l aj I2
)

jE lnlJ)



11--+ oc

BEST L p POLYNOMIAL APPROXIMA~TS

Thus, by regularity of dJi., we have

and so

1
. jn(J) ~
Imsup--=u,

11

which proves our claim.
Now by (24), for any J E (0, 1) and iz! ~ 1,

icP* (·z·)lln,;::. TI (1+ia!)ln. f1 (,1 + la,'.·. ',1 1 ."
I fl+ 1 \ -....:;:: . I J'.'

j E lfl( b) j f!:: In!.' r51
o~j~n

Hence

lim sup !I cP,; \1 ~~' ~ 1+ C,
11 --+ 'X

and, by the arbitrariness of (j E (0, 1), we obtain

With (21), it follows that

lim :icPnl!~~'=1.
n -+ x:

~_ 81

(28)

But recall that all the zeros of cP n lie in [zj < 1 (cf. [17, p. 292J), and so
(cr. [4, Chap. 2 Sect. 2.B]) (28) is equivalent to

locally uniformly in lz! > 1. Thus

lim IcP n(z W" = lim !K ncP n(z)[ In
11 --+ x. n--+:;(;

= lim IKni In lim !(j),,(z)! In
n-+x n--+x

_ i_i
-l""'i,

locally uniformly in Izl > 1. I
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From the proof we have the following

COROLLARY 3.4. The following assertions are pairwise equivalent:

(i) limn ~ x II <P n!1 ~: = 1.

(ii) lim,,~ x K~'" = 1.

(iii) lim,,~x (n+ 1)-1 L;~oln(I-lajI2)=0.

Proof (i) = (ii) The proof follows from (22) and (23).

(ii)=(i) By (28),

lim II <P" II ~j' = lim II K" cP" II~; = lim K~;" II cP"II~: = 1.
n~cc n-+x n-----x

(ii) '¢> (iii) Note that by (27),

1 1 1"
--lnK",I=--lnKo-')( ) I In(I-l aj I

2
). I

11+1 n+l _11+1 k~O

The following corollary illustrates the importance of the regularity of
measures (cf. [15]).

COROLLARY 3.5. For any p > 0, if drx (dJ1) is regular 11lith respect to I
(resp. eLl), then for any 6>0, there is NE,p>O, depending only 011 6 and p,
such that

~I P" III < (1 + 6)" II P,,!I Lp(d~)

(respectively,

for l1>Nz,p and all P"EqJ".

Proof Note that (29) is equivalent to

Since drx is regular, Theorem 3.2 implies that

lim I! p,,(d:x, . )11 yn = 1.
,,~x

(29)

(30)

(31)

Then by expanding any P" E [JJ>" in terms of {Pk(dCl., .)}~~o, we see that (31)
is true for p = 2. Then following Saff and Totik (cf. the proof of
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Theorem 1.5(ii) in [15]), we know that (31) is true for all p > O. This
proves (29).

U sing Theorem 3.3 (or Corollary 3.4) instead of Theorem 3.2, we caD.
prove (30) in a similar way. I

By Theorem 1.1 in [15], we know that for d!Y. regular with respect to I,
f is equal (dx-a.e. on I) to a function that is analytic on I if and only if

1· I f * If' I'Ln 11m sup ,;J - P",p, );1 Lp(d,! < .
f!--+ :x::

As a consequence of Theorem 3.3, for the unit circle, we have

(32)

COROLLARY 3.6. Assume d/l is regular with respect to eLl. Letf E L,,(d,uJ
for some p > 0. Ther. f is equal td/l-a.e. on eLl) to a function that is analytic
on an open set containing L1 if and only if

l' !If * i +)" l'n 111m sup I. - sn, p\J1 L,idu) < .
- I' •

n - X;

Proof We use the same method as in [18, Sect. 4.5, Theorem 5J, and
briefly describe the main steps.

First, if f is analytic on L1, then (cf. [18, p. 76J) there exist polynomials
q"ElJ>", n=O, 1,2, ..., such that

lim sup Ilf - qnl! ~~' < 1,
n--+ x

and so

1· Ilf '" 'f)'I' .. n l' .," '1.'1m sup, - S~, pI " ~p(d,,,!":;; 1m sup i j -- q,,:! cd < 1.
n.......,. x: 11 --+ :JC

This proves the necessity of (33).
Next, if (33) holds, then

r II * (")- * (f'IiL" .1msup.sn,pJ sn-Lp\ hLpldl'!<l,
n __ x

and so, by Corollary 3.5,

lim sup !Is~, pen - S~-I, p(f)i!~; < 1.

Hence g(z) :=L:~l(S~jf)-S~-LP(f))+s~.p(f)IS analytIc on Ll and
f = g d/l-a.e. on eLl. This gives the sufficiency of (33). I
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4. JE:'oITZSCH-SZEGO-TYPE THEOREMS 11" L p ApPROXIMATION

Let P" be a polynomial of exact degree n, and let Zl> Z2' ... , z" be the
zeros of P" (counting multiplicity). Define the measure v(P,,) as

where bz denotes the Dirac's measure for the point Z E C.
The arcsine measure is the measure dx/n-J1- x 2 on I. The uniform

measure on o,d, denoted by Ji*, is d8/2n (z = eilJ
).

As a consequence of Corollary 3.5, we prove

THEOREM 4.1. Let p > 0 and d':J. be regular with respect to I. Let
T".p E~" T".p(x) = x" + "', satisfy

inf
PnE&n

Pn = x fl +

n = 0,1,2, ....

Then v( T". p) converges in the lveak-star topology to the arcsine measure as
n- 00.

Proof By Theorem 2.1 in [1], we only need show that

lim sup Ii T",pll Y" ~!.
n -+·x

By Corollary 3.5, for 8> 0 and n large enough,

liT", pIII ~ (I + 8)" liT". pII Lp(d~)

~ (1 + 8)" II T"II Lp(d~)

~ (1 + 8)" Ii T"lll ({ drx) LP,

where T,,(x) := (1/2"-1) cos(n arccos x). Hence

(35)

and so (35) follows by the arbitrariness of 8> O. I
For the zero distribution of monic polynomials of minimal Lp(dJi) norm

on the unit circle, we need to modify the measure v(P,,) in (34). First, for
z E L1 0, define the positive unit measure

"'. R (t+Z) IdtlJ.:= e\- '-,
- \1- Z 2n

t E cL1.
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Then J z is the harmonic measure on cA for z (or, in the terminology of
Landkof, the Green measure for the point z and the region ,j z, [8, p. 212]L
Next, for a polynomial Pn of exact degree n with zeros z l' Z 2' ... , z" (count­
ing multiplicity), define

For a measure a, we adopt the notations

Jlt(a, z) := J log iz - ti -1 dG(t)

and

l(a):= f Jlt(a, z) da(z).

Then it is easy to see that, for z E C\L1,

J71(v(Pn ), z) = Jlt(v(P,,), z).

Now we can state

(36)

THEOREM 4.2. Let p > 0 and dJ1 be regular with respect to eLi. Let
Cn.pEg;" Cn.p(z)=zn+ ... , satish'

inf
PnE ,?Jr,

p,,=zn+ ...

n = 0,1,2, ....

Then v(Cn . p ) converges in the weak-star topology iO the uniform measure JJ*
as n ~x..

Remark. From the definition of Cn. p it is easy to show that ali its zeros
lie on L1 z.

Proof of Theorem 4.2. As in the proof of Theorem 4.1, by Corollary 3.5,
for I: > 0 and n large enough,

~(l+Br !iz"i:Lp(d!')

~ (1 + Bt (I.. dJ-l Ip
,"en

Hence

640:63·2-5

lim sup ii Cn.pl!~; = 1. (37)
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By the proof of Theorem 2.1 in [1], inequality (37) implies

lim O//(v(C",p), z) = '1I(p*, z),
,,~ ex;

So, by (36), we also have

lim JU(v(C",p),z)=JltCu*,z),
n---+-x

Z E C\,1.

ZE C\,1. (38)

Now, if v is any weak-star limit measure of the sequence {V(C",p)}:~o,

then, as in the proof of Theorem 2.1 in [1], we can obtain from (38) that

Jlt(v, z) ~ I[fl*], zEe,1.

Since v is supported on e,1 and v(e,1) = 1, integrating the last inequality
yields I[ v] ~ I[fl *]. Thus, by the uniqueness of the solution to the mini­
mum energy problem (cr. [8, Chap. II]), we get v = fl* and so the whole
sequence U(Cn. p)} :~ 0 converges in the weak-star topology to fl *. I

The following Jentzsch-Szego-type theorems show that the L p (p > 0)
best approximants also obey the principle of contamination.

THEOREM 4.3. Let f be continuous but not analytic on I, dr:t. a regular
measure with respect to I, and p > O. Then there is a subsequence AU) c N
such that v(p:,p(f)) converges in the weak-star topology to the arcsine
measure as n -+ 00, n E A(f).

THEOREM 4.4. Let f be analytic in ,1 c
, continuous on ,1, but not ana~vtic

on ,1, and let dfl be a regular measure with respect to e,1. Then, for each
p > 0, there is a subsequence AU) eN such that v(s:'p(f)) converges in the
weak-star topology to I-l* as n -+ OC;, n E A(f).

Furthermore, in the special case that logfl'EL1([0, 2n]), then v(s:'p(f))
itself converges in the weak-star topology to fl* as n -+ ex;, n E A(f).

Remarks. (i) For Jordan arcs or Jordan curves with length measure
and weights w satisfying the condition that some negative power of w is
integrable, results similar to Theorems 4.3 and 4.4 hold (cf. [1], [14]).

(ii) Theorem 4.4. is an L p version of a recent result of Mhaskar and
Saff [11].

Since the proof of Theorem 4.3 is similar to that of Theorem 4.4, we only
give the latter.

Proof of Theorem 4.4. We first show that

(39)
Il-X
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and

fl --+ x:

where s;,p(f, z) = a:,pzn + ... , n = 0,1,2, ....
Inequality (39) follows easily from Corollary 3.5:

lim sup ils:.p(f)11 ~'::%; lim sup i'S~ p(f)i! ~;d.")
n--+x n--+':L

n--+ -:x;

For (40), note that for p> 1,

n = 1, 2, 3, ....

For 0 < p < 1, we similarly get
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(40)

(41 )

Now, since f is not analytic on ,1, Corollary 3.6 yields

1· I' f * (f\ [' 1.. 11m sup '. -Sn,p },ll.;'(di"= .
n ~ x.

11= 1, 2, 3, .... (42)

{43j

Together with (41) or (42), this implies (40).
Now from (39) and (40), it follows that there is a subsequence A(f)c::N

such that the monic polynomials s:.p(f)/a~.p satisfy

. 'is: (f) !i,n
hm sup ',-,P- i :%; 1.

n-+x; Ii a:,p :12.1
nE .-1(/)

But by Lemma 3.1 in [1J, (43) implies that, for any closed set A c::eLl,

lim v(s:,p(f))(A) = O.
n--+ x

nE,llf)
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As in the proof of Theorem 4.2, (43) also gives that

lim "l/(v(s~p(f)), z) = "l/(f1*, z),
n ~ oc

nE AU)

and so, as before, we conclude that

lim "l/(v(s~p(f)), z) = "l/(f1*, z),
n -+ :x::

n E AU)
ZE C\A

and that any weak-star limit measure of {v(s~p(f))}flEA(f) must equal f1*.
This proves the first part of our theorem.

In order to prove the second part, by Theorem 2.1 in [1], it remains to
show that, for any closed set A cAe,

lim v(s:'p(f))(A) = O.
n -+ xflEAU)

For this purpose, we need the following lemma.

(44)

LEMMA 4.5. Let w(8)~0 be Lebesgue integrable on [0,2n] and
log wEL1([0, 2n]). Assume p>O and FEH X

• Then

where K 1z1 , p> 0 is independent of F.

Proof The Szego function (cf. [17, Chap. 10])

(
1 "2" ~ei8+Z)

D(z) :=exp -J logv w(8)-i-8- d8
2n 0 e -z

is in H 2
, has no zeros in A c, and satisfies

lim ID(re i8 )1 = Iw(8)/1/2,
r ------1' 1-

a.e. 8 E (0, 2n).

First, let us assume F #- 0 in A 0. Then we can define an analytic branch
of [F(z) D(Z)2/p]p in AC, and so, by Cauchy integral formula, for Izi <
r< 1,
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Thus, by letting r~ 1-, we get (cf. [2, p.21])

1 1 .2" .,
IF(z)j PID(z)\2<---1 IF(e,(i)!Pwi&)dB

I "= 2n 1- lzi"'o' /1· \ ,

i.e.,
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Thus, with KI=.p:=ID(zW2P(1-lzl)-tp, the lemma is proved when
F # O. The general case can be proved by factoring out the zeros of F, i.e.,
by writing F(z) = B(z) g(z), where g is in R X and has no zeros in .do and
B(::) is a Blaschke product, and applying the first part of the proof to g leI.
[18, Sect. 5.5]). I

We nm\' return to the proof of Theorem 4.4. Applying Lemma 4.5 to the
functionsf-s~,[JU), we see that s~,p(f) converges locally uniformly tofin
Ll". Since f has only finitely many zeros on each compact subset of [,
Hurwitz's theorem implies that (44) holds for any closed set A c.J'. Thus.
v(s~.p(f)) converges in the weak-star topology to p* as n -. 'X., n E AU).
by Theorem 2.1 in [1]. I
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